LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 M.Sc. DEGREE EXAMINATION – MATHEMATICS	
SECOND SEMESTER – APRIL 2015 MT 2811 - MEASURE THEORY AND INTEGRATION	
Date: 18/04/2015 Dept. No. Time : 01:00-04:00 Dept. No.	Max. : 100 Marks
Answer ALL questions.	
01. (a) Prove that every interval is measurable .	(5)
(OR)	
 (b) Show that, for any set A and any ε > 0, there is an oper that m[*](G) ≤ m[*](A) + ε. (c) (i) Let M be a collection of all Lebesgue measurable sets 	(5)
σ -algebra in \Re .	
(ii) Let c be any real number and f and g be real valued measurable functions defined on the same measurable set E. Then prove that $f + c$, cf , $f + g$ and fg are also measurable. (8+7)	
OR	
 (d) Prove that the following statements regarding the set E are equivalent: (i) E is measurable (ii) ∀ ∈> 0, there exists an open set O⊇ E such that m*(O - E) ≤ ε. (iii) ∃G, a G_δ - set, G ⊇ E such that m*(G - E) = 0. (iv) ∀ ∈> 0, ∃F, a closed set, F ⊆ E such that m*(E - F) ≤ ε (v) ∃F, a F_σ - set, F ⊆ E such that m*(E - F) = 0. 	
02. (a) Show that $\int_0^1 \frac{x^{\frac{1}{3}}}{1-x} \log \frac{1}{x} dx = 9 \sum_{n=1}^\infty \frac{1}{(3n+1)^2}$.	(5)
(b) If φ is a simple function then prove that $\int_{A \cup B} \varphi dx = \int_A \varphi dx + \int_B \varphi dx$, for any	
disjoint measurable sets A and B and $\int a \emptyset dx = a \int \emptyset dx$, i	fa > 0. (5)
(c) Prove that if <i>f</i> is Riemann integrable and bounded over the finite interval $[a, b]$	
then f is integrable and $R \int_{a}^{b} f dx = \int_{a}^{b} f dx$.	(15)
OR (d) State and prove Lebesgue monotone Convergence theory	rem. (15)
03. (a) (i) Define a ring and σ-ring. Prove that every algebra is algebra a σ-ring.	
(ii) Define a measure and σ -finite measure on a ring \Re . Show that if μ is a σ -	
finite measure on a ring \Re , then the extension $\overline{\mu}$ of μ measurable sets is σ -finite.	μ to S [*] , the class of μ - (5)

(b) (i) Let $\{A_i\}$ be a sequence of sets in a ring R then prove that there is a sequence $\{B_i\}$ of disjoint sets of R such that $B_i \subseteq A_i$ for each i and $\bigcup_{i=1}^N A_i = \bigcup_{i=1}^N B_i$ for each N

so that
$$\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$$
. Also show that $\mathcal{H}(\mathbb{R}) = [\mathbb{E}:\mathbb{E} \subseteq \bigcup_{n=1}^{\infty} \mathbb{E}_{n, \mathbb{E}} \mathbb{E}_n \in \mathbb{R}].$ (15)
OR

(ii) Define a complete measure. Let μ^* be an outer measure on H(R) and let S^{*} denote the class of μ^* - measurable sets. Prove that S^{*} is a σ - ring and μ^* restricted to S^{*} is a complete measure (15)

04. (a) (i) Define a convex function and prove that for a convex function ψ on (a, b)such that a < s < t < u < b, then $\psi(s, t) \le \psi(s, u) \le \psi(t, u)$. (5)

OR

(5)

(15)

(ii) State and prove Minkowski Inequality.

(b) (i) State and prove Jensen's inequality. When does equality occur?

(ii) Let a > 0, b > 0, 1/p + 1/q = 1 where p > 1 and q > 1. Show that $a^{\frac{1}{p}} b^{\frac{1}{q}} \le \frac{a}{p} + \frac{b}{q}$. (9+6)

OR

- (c) Let $\{f_n\}$ be a sequence of measurable functions which is fundamental in measure. Then prove that there exists a measurable function f such that $f_n \rightarrow f$ in measure.
- (d) Let ψ be a function on (a, b). Then prove that ψ is convex on (a, b) if and only if for each x and y such that a < x < y < b, the graph of ψ on (a, x) and (y, b) does not lie below the line through points in (x,ψ(x)) and (y, ψ(y)). (10+5)
- 05. (a) Define signed measure and show that a countable union of positive sets with respect to a signed measure v is a positive set. (5)

OR

(b) Let v be a signed measure and let μ, λ be measure on [X, S] such that μ, λ, v

are
$$\sigma$$
-finite, $v \ll \mu$, $\mu \ll \lambda$ then prove that $\frac{dv}{d\lambda} = \frac{dv}{d\mu} \frac{d\mu}{d\lambda} [\lambda]$. (5)

(c) State and prove Lebesgue decomposition theorem. (15)

OR

(d) State and prove Radon-Nikodym theorem
